Skip to content
Home » Usb B 타입 커넥터 | 이 이상한 Usb 커넥터가있는 이유 (B 형) 197 개의 베스트 답변

Usb B 타입 커넥터 | 이 이상한 Usb 커넥터가있는 이유 (B 형) 197 개의 베스트 답변

당신은 주제를 찾고 있습니까 “usb b 타입 커넥터 – 이 이상한 USB 커넥터가있는 이유 (B 형)“? 다음 카테고리의 웹사이트 sk.taphoamini.com 에서 귀하의 모든 질문에 답변해 드립니다: https://sk.taphoamini.com/wiki/. 바로 아래에서 답을 찾을 수 있습니다. 작성자 Techquickie 이(가) 작성한 기사에는 조회수 532,079회 및 좋아요 31,611개 개의 좋아요가 있습니다.

usb b 타입 커넥터 주제에 대한 동영상 보기

여기에서 이 주제에 대한 비디오를 시청하십시오. 주의 깊게 살펴보고 읽고 있는 내용에 대한 피드백을 제공하세요!

d여기에서 이 이상한 USB 커넥터가있는 이유 (B 형) – usb b 타입 커넥터 주제에 대한 세부정보를 참조하세요

Learn through problem solving, and the first 200 people can save 20% today on Brilliant at https://brilliant.org/Techquickie/
What’s the point of the different types of USB connector?
Leave a reply with your requests for future episodes, or tweet them here: https://twitter.com/jmart604
►GET MERCH: http://www.LTTStore.com/
►SUPPORT US ON FLOATPLANE: https://www.floatplane.com/
►LTX EXPO: https://www.ltxexpo.com/
AFFILIATES \u0026 REFERRALS
—————————————————
►Affiliates, Sponsors \u0026 Referrals: https://lmg.gg/sponsors
►Private Internet Access VPN: https://lmg.gg/pialinus2
►MK Keyboards: https://lmg.gg/LyLtl
►Nerd or Die Stream Overlays: https://lmg.gg/avLlO
►NEEDforSEAT Gaming Chairs: https://lmg.gg/DJQYb
►Displate Metal Prints: https://lmg.gg/displateltt
►Epic Games Store (LINUSMEDIAGROUP): https://lmg.gg/kRTpY
►Official Game Store: https://www.nexus.gg/ltt
►Amazon Prime: https://lmg.gg/8KV1v
►Audible Free Trial: https://lmg.gg/8242J
►Our Gear on Amazon: https://geni.us/OhmF

FOLLOW US ELSEWHERE
—————————————————
Twitter: https://twitter.com/linustech
Facebook: http://www.facebook.com/LinusTech
Instagram: https://www.instagram.com/linustech
Twitch: https://www.twitch.tv/linustech
FOLLOW OUR OTHER CHANNELS
—————————————————
Linus Tech Tips: https://lmg.gg/linustechtipsyt
TechLinked: https://lmg.gg/techlinkedyt
ShortCircuit: https://lmg.gg/shortcircuityt
LMG Clips: https://lmg.gg/lmgclipsyt
Channel Super Fun: https://lmg.gg/channelsuperfunyt
Carpool Critics: https://lmg.gg/carpoolcriticsyt

usb b 타입 커넥터 주제에 대한 자세한 내용은 여기를 참조하세요.

USB커넥터(52) – ::: ic114.com- 국내최대전자부품 전문 쇼핑몰:::

메이커Any Vendor; 제품명USB-109W; 한글명USB커넥터B형 유에스비비형커넥터; 약어USB-B-WHITE; 제품안내 상세보기USB Connector(USB-B Type Right Angle Connector).

+ 더 읽기

Source: www.ic114.com

Date Published: 12/29/2022

View: 7930

USB hardware – Wikipedia

8-pin Mini-B plug, a proprietary connector used on many older Japanese cameras for both USB and analog AV output (This strongly …

+ 여기에 보기

Source: en.wikipedia.org

Date Published: 7/6/2021

View: 2504

USB 케이블(커넥터)의 종류와 이름을 알아보자.

USB 케이블(커넥터)의 종류와 이름을 알아보자. · 1.1. USB Type-A · 1.2. USB 3.0 · 1.3. 통합 24pin · 1.4. USB mini-B · 1.5. USB micro-B · 1.6. USB micro- …

+ 여기에 보기

Source: dpreviewplus.tistory.com

Date Published: 1/16/2022

View: 9966

주제와 관련된 이미지 usb b 타입 커넥터

주제와 관련된 더 많은 사진을 참조하십시오 이 이상한 USB 커넥터가있는 이유 (B 형). 댓글에서 더 많은 관련 이미지를 보거나 필요한 경우 더 많은 관련 기사를 볼 수 있습니다.

이 이상한 USB 커넥터가있는 이유 (B 형)
이 이상한 USB 커넥터가있는 이유 (B 형)

주제에 대한 기사 평가 usb b 타입 커넥터

  • Author: Techquickie
  • Views: 조회수 532,079회
  • Likes: 좋아요 31,611개
  • Date Published: 2021. 2. 12.
  • Video Url link: https://www.youtube.com/watch?v=egkqDwQuh8E

Mini USB B TYPE 5PIN 커넥터 (NTOM10050151)

배송정보 택배발송 택배사 : 롯데택배 1588-2121 또는 기타 택배

배송지역 : 전국 (제주 및 도서산간지역은 3,000원 추가 운임이 발생하며 일부 지역은 +@ 추가 비용이 발생 됩니다.)

배송기간 : 영업일 기준 평균 1~3일 소요되며, 택배사 사정에 따라 달라질 수 있습니다. (주말/공휴일 배송기간 제외)

무료배송 : 총 결제 금액이 배송비를 제외하고 66,000원(vat포함) 이상인 경우 무료배송 처리됩니다.

유료배송 : 롯데택배 출고 기준 2,700원(vat포함)

무료/유료 배송의 경우 : 직배송, 타 택배 이용시 유료배송 비용은 변경됩니다.

부피 및 무게가 10KG 이상, 총 합의 길이가 1.2M 이상 또는 배송 사정으로 인해 롯데택배 이외 타 택배로 출고될 수 있으며,

운송수단에 따라 배송비는 선불 또는 착불(고객 부담) 발생될 수 있습니다. 퀵 / 고속 / KTX / 방문수령 결제시 배송 방법 변경 (네이버페이는 장바구니에서 변경하셔야 적용 됩니다.)

퀵 비용은 구매자 부담(착불)으로 서울,인천,경기 일부지역에서만 가능한 서비스입니다.

고속버스 : 일반 고속버스 탁송료 20,000원 / KTX : 탁송료 30,000원

구매자 부담이며 지역 및 이동 시간에 따라 오후 3시 이후 접수 건은 당일 탁송 어려울 수 있습니다.

구매자 부담이며 지역 및 이동 시간에 따라 오후 3시 이후 접수 건은 당일 탁송 어려울 수 있습니다. 제품은 [본사-인천]에서 준비되며, 방문 수령 장소는 [본사-인천]과 [구로매장]에서 선택 가능합니다.

제품이 준비되고 별도 연락 받으신 이후 수령 가능하며,결제 직후 수령은 불가합니다.

제품이 준비되고 별도 연락 받으신 이후 수령 가능하며,결제 직후 수령은 불가합니다. 상품 준비기간은 상품에 명시된 평균 준비기간에 따릅니다.

업체 직배송 및 해외 구매대행 상품의 경우 본사에서 준비되지 않는 상품으로 수령방법 변경 불가합니다. 배송안내 평균 준비기간은 발송일정이 아니며 상품을 준비하는 기간을 평균적으로 명시하며, 제조사 입고처 사정에 따라 평균 준비기간은 변동됩니다.

영업일 기준 오후 3시 이전 결제확인 된 주문 건은 당사 보유 재고 상품에 한하여 당일 출고 됩니다.

1가지 이상 상품을 주문을 하신 경우 평균 준비기간이 가장 긴 상품의 준비기간에 맞춰 일괄 또는 나눔 발송 처리됩니다.

일부 상품의 경우 재고 보유 상황에 따라서 평균 발송일에 다소 차이가 발생될 수 있습니다.

사전에 재고 확인 후 주문한 경우라도 이미 재고 소진이 된 이후에는 상품 준비기간은 안내 받으신 날짜와 상관없이 변경됩니다.

AS안내 반품/환불신청 반품/교환/취소 및AS안내 취소 진행 안내 직접 취소 가능 – 주문접수[결제 전-입금 전]상태에서는 회원,비회원 구분없이 디바이스마트 로그인 후 – 주문내역에서 ‘주문무효’ 처리를 통해 취소 가능합니다.

취소 접수 요청 – 결제완료 이후의 상태에서는 고객 본인 취소가 불가한 상태로 반드시 디바이스마트 고객센터 또는 1:1문의 게시판 통해 취소 문의 부탁드립니다. 반품/교환/취소 및 AS안내 제품 수령 후 7일(주말/공휴일 포함) 이내 다음 사항의 경우 반품/교환 가능합니다.

A/S 관련 문의는 업체마다 상이할 수 있으며, 해외 상품은 A/S 불가할 수 있습니다.

초기 불량, 오배송이 판매자 귀책일 경우 왕복 택배비용은 판매자 부담입니다.

모든 제품은 제조사, 공급 업체 사정 및 천재지변 등에 따라 단가 변동 및 품절/단종/대체 등 재고 소진이 발생될 수 있습니다. 반품/교환/취소 및 AS 가능 [O] 수령한 제품의 초기 불량, 파손, 오배송,상세페이지 내용 불일치 등으로 사용이 불가한 경우

단순 고객변심으로 인한 접수 기간이 7일을 초과하지 않고 , 제품을 훼손 또는 파손 하지 않고 , 미개봉/미사용인 경우

제품 초기 불량으로 의심 되어 수령일 기준 7일이내 고객센터 접수 후 불량 확인 되었을 경우 반품/교환/취소 및 AS 불가 [X] 제품 수령일 기준 7일(주말/공휴일 포함)이 초과한 경우

제품 및 포장을 파손, 훼손 변형 시켜 재화의 가치를 하락시키거나 사용자 과실로 인해 불량이 발생한 경우

디바이스마트에 사전 안내나 확인 없이 반품 또는 제품을 일방적으로 전달하여 당사로 보내는 경우

주문 제작 상품, 절단 상품, 해외 배송 상품, 복사 가능 상품(서적,USB,소프트웨어,메일 전송 등), 일회성 상품의 경우에는 반품/교환/취소 /AS 절대 불가

제품 수령 후 7일 또는 30일을 초과하여 오배송/누락 배송/택배사 분실로 교환/반품/취소 또는 추가 배송을 요청하는 경우

해외 수입 상품을 1개 이상 주문 후 일부 상품의 단가 변동 및 품절/단종/대체 등 재고 소진 등의 이유로

공급이 불가하게 되어 나머지 상품 취소/반품/ 교환등을 요청의 경우

공급이 불가하게 되어 나머지 상품 취소/반품/ 교환등을 요청의 경우 1회 이상의 반품/교환/취소를 진행하였으나 동일 내용을 지속적으로 2회 이상 접수하여 수령일 기준 30일을 초과하는 경우

고객 동의 후 대체/ 교환/AS 등을 진행하였으나 제품에 대한 인지 부족 또는 고객 변심으로 취소요청하는 경우 일부 상품의 경우 반품 /교환/취소 및 AS불가

오배송 또는 AS 요청 교환 기간이 초과 또는 사용 후 반품을 보내는 경우

USB Type-B 케이블을 구입하기 전에 다음 사항을 알아야 합니다! -인포에이스테크

USB Type-B 케이블이란 무엇이며 그 용도는 무엇입니까?

USB Type-B 케이블이 무엇인지, 어떤 용도로 사용되는지 찾고 있거나 구매해야 하거나 알고 싶다면 여기에서 답변을 확인할 수 있습니다.

전자 장비가 없는 현대 생활은 상상하기 어렵습니다.스마트폰, 태블릿, 프린터, 노트북… 간단히 말해서 이러한 장치 중 몇 개가 집에 나타날 수 있습니다.이러한 모든 장치에는 고유한 목적이 있으므로 각각 고유한 방식으로 작동합니다.

그러나 대부분의 이러한 장치에는 몇 가지 공통점이 있습니다.우리는 케이블에 대해 이야기하고 있습니다.무엇인지 자세히 소개하겠습니다.USB B 형케이블 그리고 그 목적.

USB 케이블

USB(범용 직렬 버스) 케이블은 우리 생활 곳곳에 있습니다.거의 모든 전자 장치는 다른 전자 장치를 연결하거나 무선 장치를 충전하기 위해 특별한 구성 요소(USB 케이블)가 필요합니다.

기술과 장비의 지속적인 발전과 발전으로 해당 주변 장비도 지속적으로 발전하고 있습니다.USB 케이블에서도 동일한 기술 업데이트 추세가 관찰됩니다.여기에서는 USB 유형 B, 할당이 무엇인지, UBS 유형 A 또는 유형 C와 구별하는 방법을 분석합니다.

USB 케이블의 종류

USB Type-B를 완전히 이해하려면 먼저 다양한 버전의 USB 표준을 이해해야 합니다.USB 유형은 포트와 플러그의 물리적 모양과 배선을 나타내고 버전은 전체 상호 연결 시스템의 속도와 기능을 나타냅니다.

USB Type-A 및 Type-C

USB Type-A는 평평한 직사각형 모양으로 최초의 USB 표준의 독창적인 디자인입니다.Type-A 포트는 일반적으로 데스크톱 컴퓨터, 랩톱, 게임 콘솔, 키보드, 마우스, 플래시 드라이브 및 미디어 플레이어와 같은 호스트 장치에 있습니다.주변 장치는 Type-A 포트를 거의 사용하지 않습니다.

USB Type-C는 최신 버전이며 대부분의 새 장치에서 찾을 수 있습니다.이전 USB 버전보다 빠른 데이터 전송 속도를 제공합니다.USB-C의 가장 큰 장점은 뒤집을 수 있고 양쪽에서 연결할 수 있다는 것입니다.따라서 모바일 장치의 새로운 표준입니다.

USB 케이블 버전

USB 버전에는 1.1, 2.0, 3.0 및 3.1이 있습니다.USB 1.1은 1998년에 출시된 최초의 USB 버전으로 최대 속도는 12Mbps입니다.많은 경우 USB 1.1은 1.2Mbps에서만 작동할 수 있으며 대부분 사용되지 않습니다.

USB 2.0은 2000년에 도입되었으며 고속 모드에서 최대 속도는 480Mbps 또는 12Mbps입니다.이전 버전의 USB 1.1과 호환되며 최대 출력 전력은 2.5V(1.8A)입니다.

USB 3.0은 2008년에 도입되었으며 SuperSpeed ​​모드에서 최대 속도가 5Gbps이며 일반적으로 파란색입니다.USB 2.0과 역호환되며 최대 5V(1.8A)의 전원을 공급할 수 있습니다.

USB의 최신 버전은 3.1년에 출시된 2013로 10Gbps의 속도를 두 배로 높여 기존 Thunderbolt 표준만큼 빠릅니다.USB 3.0 및 USB 2.0과 역호환됩니다.USB 3.1에는 5V에서 최대 2A(최대 10W) ​​및 12V(60W) 또는 20V(100W)에서 최대 5A의 세 가지 전력 프로필이 있어 더 큰 장치가 호스트 전력을 소비할 수 있습니다.

USB Type-B란 무엇입니까?

공식적으로 Standard-B 커넥터라고 하는 USB Type-B 커넥터는 USB 버전에 따라 상단에 모따기된 외부 모서리가 있는 정사각형 모양입니다.

모든 USB 버전은 USB 3.0, USB 2.0 및 USB 1.1을 포함하여 이러한 유형 B 커넥터를 지원합니다.Powered-B라고 하는 두 번째 유형의 커넥터 “B”는 USB 3.0 버전에만 존재합니다.

USB 3.0 Type B 커넥터는 일반적으로 파란색이고 USB 2.0 Type B 및 USB 1.1 Type B 커넥터는 일반적으로 검은색입니다.그러나 USB Type-B 커넥터와 케이블은 모든 색상이 가능합니다.USB Type B 수 커넥터를 플러그라고 하고 암 커넥터를 소켓 또는 포트라고 합니다.

USB Type B 플러그는 일반적으로 USB A/B 케이블의 한쪽 끝에 있습니다.USB Type B 플러그는 프린터 또는 기타 장치의 USB Type B 소켓에 적합하고 USB Type A 플러그는 USB Type B 소켓에 적합합니다.호스트 장치(예: 컴퓨터)에 있는 A.

USB Type-B 케이블의 목적

유형 B USB 케이블은 프린터 및 스캐너와 같은 더 큰 장치에서 더 일반적입니다.때로는 광학 드라이브, 플로피 드라이브 및 하드 드라이브 인클로저와 같은 외부 저장 장치에서 USB Type-B 포트를 찾을 수도 있습니다.

주변 장치의 다양한 모양과 크기로 인해 Type-B 커넥터와 그 보완 포트의 디자인도 다양합니다.현재 USB Type-B 플러그 및 커넥터에는 원래 Standard-B, Mini-B, Micro-B USB, Micro-B USB 3.0 및 Standard-B USB 3.0을 포함하여 XNUMX가지 주요 유형이 있습니다.

Standard-B는 프린터 또는 스캐너와 같은 대형 주변 장치를 컴퓨터에 연결하도록 설계되었으며 USB 1.1용으로 개발되었습니다. 훨씬 더 작은 Mini-B 포트는 디지털 카메라 및 구형 휴대용 장치와 같은 구형 휴대용 장치에 나타나며 더 이상 사용되지 않습니다.

Micro-B USB는 Mini보다 약간 작으며 오늘날 스마트폰과 태블릿에 가장 널리 사용되는 USB 포트 디자인입니다.Micro-USB 3.0은 USB 3.0 휴대용 드라이브에 주로 사용되는 가장 광범위한 디자인입니다.일반적으로 Type A 케이블의 끝은 파란색입니다.Standard-B와 유사하게 Standard-B USB 3.0은 3.0 관리 속도를 처리하도록 설계되었습니다.

자주 묻는 질문

USB TYPE-A

USB TYPE-A 수컷과 USB TYPE-A 암컷이란 무엇입니까?

커넥터와 포트는 호환되는 것을 나타내기 위해 “수” 및 “암”이라고 하는 경우가 있습니다.

USB Type-A 수 커넥터를 USB Type-A 암 포트에 삽입합니다.

USB 3.1 유형 A는 무엇입니까?

이는 USB Type-A 커넥터 또는 포트가 USB 3.1 표준을 채택하고 이 버전의 빠른 정보 교환 속도를 달성할 수 있음을 의미합니다.

USB Type-A to Micro-HDMI가 있습니까?

是으로.스마트폰이나 태블릿을 더 큰 프로그램(예: 컴퓨터 화면, 고화질 TV 또는 비디오 프로젝터)에 연결할 때 이러한 케이블 중 하나를 사용할 수 있습니다.

Micro-HDMI는 HDMI Type-D라고도 하며 모양이 USB Type-B Micro 커넥터와 매우 유사합니다.

USB TYPE-B

USB TYPE-B의 목적은 무엇입니까?

일반적으로 프린터 및 스캐너와 같은 더 큰 장치에서 컴퓨터와 인터페이스하는 USB Type-B 포트를 찾을 수 있습니다.외부 용량 가젯이나 이를 사용하는 드라이브가 있을 수도 있습니다.

대부분의 USB Type-B 커넥터는 USB Type-B-USB Type-A 케이블의 한쪽 끝에 있습니다.유형 B 커넥터를 프린터, 스캐너 또는 기타 장치에 연결하고 유형 A 커넥터를 컴퓨터의 표준 USB 포트에 연결합니다.

USB TYPE-B를 통해 동영상을 재생할 수 있습니까?

네, USB Type-B 포트가 있는 비디오 프로젝터와 중요한 기능을 가진 컴퓨터가 있다면 기회입니다.

USB Type-B – USB Type-A 케이블을 사용하여 두 장치를 연결한 다음 프로젝터의 설정을 조정하여 USB를 통해 데이터를 수신하고 있음을 알 수 있습니다.

어떤 경우에도 USB가 비디오 재생에 가장 적합한 형식은 아니며 HDMI가 더 나은 선택일 수 있습니다.

USB 유형 -C

USB TYPE-C의 용도는 무엇입니까?

USB-C 커넥터는 데이터, 전원, 비디오 및 오디오를 전송하는 데 사용할 수 있습니다.

그러나 작동 속도는 연결 대상에 따라 다릅니다.

다양한 가제트에는 다양한 종류의 USB 포트가 있습니다.대부분은 USB 3.1, USB 3.2 및 Thunderbolt 3의 세 가지 범주로 나뉩니다(마지막으로 언급된 것은 주로 Apple 컴퓨터에서 발견됨).

기본적으로 USB 3.1 포트가 있는 USB-C 케이블은 초당 10GB의 정보를 교환할 수 있습니다.3.2 하버를 사용하면 초당 20GB의 데이터가 제공됩니다.Thunderbolt 3 포트를 사용하면 USB-C 케이블이 초당 40GB의 데이터를 전송할 수 있습니다.

이것은 다른 유형의 USB 커넥터보다 훨씬 빠릅니다.

USB-C 케이블은 제어를 전환하는 데 너무 많이 사용됩니다. 편리한 기기, 스마트폰, 휴대용 워크스테이션 및 보안 카메라를 충전하는 데 자주 사용됩니다.

내 노트북에 USB TYPE-C가 있습니까?

Apple MacBook이라면 가능성이 매우 높습니다.크롬북이나 다른 제조사에서 만든 최신 데모라면 상상할 수 있습니다.

검색은 간단합니다. 태블릿에 USB Type-C 포트와 유사한 포트가 있습니까?

내 MAC에 USB TYPE-C가 있습니까?

모델에 따라 다릅니다.USB type-c를 지원하는 Mac 목록입니다.

iMac(Retina 5K, 27형, 2017 및 최신 모델)

iMac(Retina 4K, 21.5형, 2017 및 최신 모델)

아이맥(21.5인치, 2017)

iMac Pro (2017)

MacBook Pro(2016 및 최신 모델)

MacBook(2015 이상)

MacBook Air(2018년 후반 또는 이후 모델)

Mac mini(2018년 후반 이후 모델)

MacBook에 포트가 하나만 있는 경우 USB Type-C 포트입니다.

USB TYPE-C 장치를 PC에 연결하는 방법은 무엇입니까?

USB Type-C – USB Type-A 케이블 또는 USB Type-C – USB Type-C 케이블을 사용하여 USB Type-C 장치를 연결할 수 있습니다.

USB Type-C와 MICRO-USB의 차이점을 어떻게 알 수 있습니까?

이러한 커넥터에는 서로 분리되어 있음을 알 수 있는 물리적 대비가 있습니다.

USB Type-C와 MICRO-USB의 차이점

USB Type-C에는 Micro-USB보다 약간 큰 타원형 플러그가 있습니다.어느 면에나 내장할 수 있습니다.

Micro-USB는 한 방향으로 멈출 수 있으며 발에는 케이블을 고정할 수 있는 XNUMX개의 올가미가 있습니다.

MICRO-USB 충전기를 사용하여 USB Type-C 장치를 충전할 수 있습니까?

예, 하지만 범용 커넥터 또는 어댑터가 필요합니다.USB Type-C와 Micro-USB는 같지 않으며 서로의 포트에 맞지 않습니다.

USB TYPE-C가 미니 USB에 적합합니까?

是으로.미니 USB 포트는 종종 USB OTG(On-The-Go) 주변기기(스마트폰 및 태블릿 등)에서 찾아볼 수 있어 호스트 장치로 작동하도록 변경할 수 있습니다.

USB Type-C-Mini-USB 케이블을 사용하면 이러한 장치를 USB Type-C(또는 Thunderbolt) 포트가 있는 모든 노트북에 연결할 수 있습니다.

USB 3.1 TYPE-C란 무엇입니까? USB 3.0 TYPE-C란 무엇입니까?

USB 3.1 또는 USB 3.0과 호환되는 USB Type-C 커넥터 또는 포트입니다.

USB TYPE-C는 Thunderbolt와 동일합니까?

USB와 썬더볼트는 경쟁 규격이었는데, 썬더볼트의 마지막 버전은 USB Type-C와 동일한 형태와 대부분의 기능을 채택하도록 변경되었습니다.

즉, 모든 Thunderbolt 3 이상의 포트를 USB Type-C 포트로 사용할 수 있으며 모든 케이블을 USB Type-C 케이블로 사용할 수 있습니다.

Thunderbolt 3 및 4 포트에 연결된 모든 USB Type-C 장치는 작동하지만 USB Type-C 포트에 연결하면 Thunderbolt 3 및 4 장치가 작동하지 않습니다.

USB TYPE-C는 뒤집을 수 있습니까?

是으로.커넥터는 어느 쪽이든 삽입할 수 있도록 설계되었습니다.

USB TYPE-C는 USB OTG와 함께 작동합니까?

예, USB On-The-Go(OTG)는 USB Type-C 연결에 적합합니다.

USB OTG는 호환 장치(非 Apple) 컴퓨터에 연결하지 않고 USB 장치에서 데이터를 읽습니다.

따라서 다음에 연결할 수 있습니다.

외장형 HDD, SSD 또는 USB 플래시 드라이브

키보드, 마우스 또는 게임 컨트롤러

디지털 카메라

인쇄기

USB TYPE-C는 얼마나 빠릅니까?

USB Type-C는 3.1Gbit/s(SuperSpeed+라고 함)에서 정보를 교환할 수 있는 USB 10 표준을 활용하도록 설계되었습니다.

USB TYPE-C 케이블이 USB 2.0과 일치합니까?

是으로.USB Type-C는 USB 2.0 및 3.0 장치와 호환됩니다.그러나 USB Type-C 커넥터는 USB 2.0 및 3.0 케이블의 커넥터와 모양이 다르기 때문에 어댑터가 필요합니다.

USB TYPE-C는 FireWire와 동일합니까?

할 수 없습니다. USB와 FireWire는 정보 교환에서 동일한 작업을 수행하지만 서로 다른 벤치마크입니다.한때 매우 유명했던 FireWire는 USB가 업계 표준이 되면서 오랫동안 쇠퇴했습니다.

USB TYPE-C를 사용하여 휴대폰을 충전할 수 있습니까?

USB Type-C 충전 포트가 있는 스마트폰:

제작 모델 블랙 베리 키 2 谷 歌 픽셀 3, 픽셀 3 XL HTC 출애굽기 1, U11, U11 Plus, U12 Plus, U Ultra 화웨이 메이트 20 프로, 넥서스 6P, P20 LG G7 ThinQ, V40 ThinQ 모토로라 모토 G6, 모토 Z3 재생 Nokia 8 시로코 OnePlus 6T Razer 전화 2 三星 갤럭시 S9, S9 플러스, 갤럭시 노트 9 索尼 엑스페리아 XZ2, XZ2 컴팩트

목록에서 더 보기

ASSMANN WSW USB 커넥터 (타입B), ASSMANN WSW COMPONENTS

(!)Microsoft사의 Windows7은 2020년 1월 14일부터 서비스 종료 예정으로, 본 사이트에서는 2019년 12월 15일부터 권장 환경 대상에서 제외됨을 알려드립니다.

USB hardware

Communication connector using the USB protocol

This article is about the physical and electrical aspects of USB connectors. For the standard in general, see USB

Micro-B plug 8-pin Mini-B plug, a proprietary connector used on many older Japanese cameras for both USB and analog AV output (This strongly resembles the 8-pin Micro-B plug which often has only 5 pin positions occupied.) Mini-B plug Type-A receptacle (inverted, so the contacts are visible) Type-A plug Type-B plug Various USB connectors along a centimeter ruler for scale. From left to right:

The initial versions of the USB standard specified connectors that were easy to use and that would have acceptable life spans; revisions of the standard added smaller connectors useful for compact portable devices. Higher-speed development of the USB standard gave rise to another family of connectors to permit additional data paths. All versions of USB specify cable properties; version 3.x cables include additional data paths. The USB standard included power supply to peripheral devices; modern versions of the standard extend the power delivery limits for battery charging and devices requiring up to 100 watts. USB has been selected as the standard charging format for many mobile phones, reducing the proliferation of proprietary chargers.

Connectors [ edit ]

Comparison of USB connector plugs, excluding USB-C type plugs

The three sizes of USB connectors are the default or standard format intended for desktop or portable equipment, the mini intended for mobile equipment, which was deprecated when it was replaced by the thinner micro size, all of which were deprecated with the release of Type-C. There are five speeds for USB data transfer: Low Speed, Full Speed, High Speed (from version 2.0 of the specification), SuperSpeed (from version 3.0), and SuperSpeed+ (from version 3.1). The modes have differing hardware and cabling requirements. USB devices have some choice of implemented modes, and USB version is not a reliable statement of implemented modes. Modes are identified by their names and icons, and the specification suggests that plugs and receptacles be colour-coded (SuperSpeed is identified by blue).

Unlike other data buses (such as Ethernet), USB connections are directed; a host device has “downstream” facing ports that connect to the “upstream” facing ports of devices. Only downstream facing ports provide power; this topology was chosen to easily prevent electrical overloads and damaged equipment. Thus, USB cables have different ends: A and B, with different physical connectors for each. Each format has a plug and receptacle defined for each of the A and B ends. A USB cable, by definition, has a plug on each end—one A (or C) and one B (or C)—and the corresponding receptacle is usually on a computer or electronic device. The mini and micro formats may connect to an AB receptacle, which accepts either an A or a B plug, that plug determining the behavior of the receptacle.

Connector properties [ edit ]

USB extension cable, plug on the left, receptacle (nonstandard, receptacles normally not allowed on cables) on the right

The connectors the USB committee specifies support a number of USB’s underlying goals, and reflect lessons learned from the many connectors the computer industry has used. The connector mounted on the host or device is called the receptacle, and the connector attached to the cable is called the plug.[1] The official USB specification documents also periodically define the term male to represent the plug, and female to represent the receptacle, though these uses are inconsistent with established definitions of connector gender.[2]

By design, it is difficult to insert a USB plug into its receptacle incorrectly. The USB specification requires that the cable plug and receptacle be marked so the user can recognize the proper orientation.[1] The USB-C plug however is reversible. USB cables and small USB devices are held in place by the gripping force from the receptacle, with no screws, clips, or thumb-turns as other connectors use.

The different A and B plugs prevent accidentally connecting two power sources. However, some of this directed topology is lost with the advent of multi-purpose USB connections (such as USB On-The-Go in smartphones, and USB-powered Wi-Fi routers), which require A-to-A, B-to-B, and sometimes Y/splitter cables. See the USB On-The-Go connectors section below for a more detailed summary description.

There are so-called cables with A plugs on both ends, which may be valid if the “cable” includes, for example, a USB host-to-host transfer device with two ports.[3] This is, by definition, a device with two logical B ports, each with a captive cable, not a cable with two A ends.

Durability [ edit ]

The standard connectors were designed to be more robust than many past connectors. This is because USB is hot-swappable, and the connectors would be used more frequently, and perhaps with less care, than previous connectors.

Standard USB has a minimum rated lifetime of 1,500 cycles of insertion and removal,[4] the mini-USB receptacle increases this to 5,000 cycles,[4] and the newer Micro-USB[4] and USB-C receptacles are both designed for a minimum rated lifetime of 10,000 cycles of insertion and removal.[5] To accomplish this, a locking device was added and the leaf-spring was moved from the jack to the plug, so that the most-stressed part is on the cable side of the connection. This change was made so that the connector on the less expensive cable would bear the most wear.[6][4]

In standard USB, the electrical contacts in a USB connector are protected by an adjacent plastic tongue, and the entire connecting assembly is usually protected by an enclosing metal shell.[4]

The shell on the plug makes contact with the receptacle before any of the internal pins. The shell is typically grounded, to dissipate static electricity and to shield the wires within the connector.

Compatibility [ edit ]

The USB standard specifies tolerances for compliant USB connectors to minimize physical incompatibilities in connectors from different vendors. The USB specification also defines limits to the size of a connecting device in the area around its plug, so that adjacent ports are not blocked. Compliant devices must either fit within the size restrictions or support a compliant extension cable that does.

Pinouts [ edit ]

USB 2.0 uses two wires for power (V BUS and GND), and two for differential serial data signals. Mini and micro connectors have their GND connections moved from pin #4 to pin #5, while their pin #4 serves as an ID pin for the On-The-Go host/client identification.[7]

USB 3.0 provides two additional differential pairs (four wires, SSTx+, SSTx−, SSRx+ and SSRx−), providing full-duplex data transfers at SuperSpeed, which makes it similar to Serial ATA or single-lane PCI Express.

Standard, Mini-, and Micro-USB plugs shown end-on, not to scale. Light areas represent cavities. The plugs are pictured with USB logo to the top.[8] shown end-on, not to scale. Light areas represent cavities. The plugs are pictured with USB logo to the top.

Micro-B SuperSpeed plug Power (V BUS , 5 V) Data− (D−) Data+ (D+) ID (On-The-Go) GND SuperSpeed transmit− (SSTx−) SuperSpeed transmit+ (SSTx+) GND SuperSpeed receive− (SSRx−) SuperSpeed receive+ (SSRx+)

Type-A and -B pinout Pin Name Wire color[a] Description 1 V BUS Red or Orange +5 V 2 D− White or Gold Data− 3 D+ Green Data+ 4 GND Black or Blue Ground

Mini/Micro-A and -B pinout Pin Name Wire color[a] Description 1 V BUS Red +5 V 2 D− White Data− 3 D+ Green Data+ 4 ID No wire On-The-Go ID distinguishes cable ends: “A” plug (host): connected to GND

“B” plug (device): not connected 5 GND Black Signal ground

a b In some sources D+ and D− are erroneously swapped.

Colors [ edit ]

A yellow charge-only USB port on a front panel USB 3.0 switch with card reader

A blue Standard-A USB connector on a Sagemcom F@ST 3864OP ADSL modem router without USB 3.0 contacts fitted

Usual USB color-coding Color Location Description Black or white Ports and plugs Type-A or type-B Blue (Pantone 300C) Ports and plugs Type-A or type-B, SuperSpeed Teal blue Ports and plugs Type-A or type-B, SuperSpeed+ Green Ports and plugs Type-A or type-B, Qualcomm Quick Charge (QC)[9] Purple Plugs only Type-A or USB-C, Huawei SuperCharge Yellow or red Ports only High-current or sleep-and-charge Orange Ports only High-retention connector, mostly used on industrial hardware

USB ports and connectors are often color-coded to distinguish their different functions and USB versions. These colors are not part of the USB specification and can vary between manufacturers; for example, USB 3.0 specification mandates appropriate color-coding while it only recommends blue inserts for standard-A USB 3.0 connectors and plugs.[10]

Connector types [ edit ]

USB connector types multiplied as the specification progressed. The original USB specification detailed standard-A and standard-B plugs and receptacles. The connectors were different so that users could not connect one computer receptacle to another. The data pins in the standard plugs are recessed compared to the power pins so that the device can power up before establishing a data connection. Some devices operate in different modes depending on whether the data connection is made. Charging docks supply power and do not include a host device or data pins, allowing any capable USB device to charge or operate from a standard USB cable. Charging cables provide power connections, but not data. In a charge-only cable, the data wires are shorted at the device end, otherwise, the device may reject the charger as unsuitable.

Standard connectors [ edit ]

Pin configuration of type-A and type-B plugs viewed end-on

The type-A plug. This plug has an elongated rectangular cross-section, inserts into a type-A receptacle on a downstream port on a USB host or hub, and carries both power and data. Captive cables on USB devices, such as keyboards or mice, terminate with a type-A plug.

on a USB host or hub, and carries both power and data. Captive cables on USB devices, such as keyboards or mice, terminate with a type-A plug. The type-B plug: This plug has a near square cross-section with the top exterior corners beveled. As part of a removable cable, it inserts into an upstream port on a device, such as a printer. On some devices, the type-B receptacle has no data connections, being used solely for accepting power from the upstream device. This two-connector-type scheme (A/B) prevents a user from accidentally creating a loop.[11][12]

The maximum allowed cross-section of the overmold boot (which is part of the connector used for its handling) is 16 by 8 mm (0.63 by 0.31 in) for the standard-A plug type, while for the type-B it is 11.5 by 10.5 mm (0.45 by 0.41 in).[2]

Mini connectors [ edit ]

Mini-A (left) and Mini-B (right) plugs

Mini-USB connectors were introduced together with USB 2.0 in April 2000, for use with smaller devices such as digital cameras, smartphones, and tablet computers. The Mini-A connector and the Mini-AB receptacle connector have been deprecated since May 2007.[13] Mini-B connectors are still supported, but are not On-The-Go-compliant;[14] the Mini-B USB connector was standard for transferring data to and from the early smartphones and PDAs. Both Mini-A and Mini-B plugs are approximately 3 by 7 mm (0.12 by 0.28 in).

Micro connectors [ edit ]

Micro-A plug Micro-B plug

Micro-USB connectors, which were announced by the USB-IF on 4 January 2007,[15][16] have a similar width to Mini-USB, but approximately half the thickness, enabling their integration into thinner portable devices. The Micro-A connector is 6.85 by 1.8 mm (0.270 by 0.071 in) with a maximum overmold boot size of 11.7 by 8.5 mm (0.46 by 0.33 in), while the Micro-B connector is 6.85 by 1.8 mm (0.270 by 0.071 in) with a maximum overmold size of 10.6 by 8.5 mm (0.42 by 0.33 in).[8]

The thinner Micro-USB connectors were intended to replace the Mini connectors in devices manufactured since May 2007, including smartphones, personal digital assistants, and cameras.[17]

The Micro plug design is rated for at least 10,000 connect-disconnect cycles, which is more than the Mini plug design.[15][18] The Micro connector is also designed to reduce the mechanical wear on the device; instead, the easier-to-replace cable is designed to bear the mechanical wear of connection and disconnection. The Universal Serial Bus Micro-USB Cables and Connectors Specification details the mechanical characteristics of Micro-A plugs, Micro-AB receptacles (which accept both Micro-A and Micro-B plugs), Double-Sided Micro USB, and Micro-B plugs and receptacles,[18] along with a Standard-A receptacle to a Micro-A plug adapter.

OMTP standard [ edit ]

Micro-USB was endorsed as the standard connector for data and power on mobile devices by the cellular phone carrier group Open Mobile Terminal Platform (OMTP) in 2007.[19]

Micro-USB was embraced as the “Universal Charging Solution” by the International Telecommunication Union (ITU) in October 2009.[20]

In Europe, micro-USB became the defined common external power supply (EPS) for use with smartphones sold in the EU,[21] and 14 of the world’s largest mobile phone manufacturers signed the EU’s common EPS Memorandum of Understanding (MoU).[22][23] Apple, one of the original MoU signers, makes Micro-USB adapters available—as permitted in the Common EPS MoU—for its iPhones equipped with Apple’s proprietary 30-pin dock connector or (later) Lightning connector.[24][25] according to the CEN, CENELEC, and ETSI.

USB 3.x connectors and backward compatibility [ edit ]

USB 3.0 Micro-B SuperSpeed plug

USB 3.0 introduced Type-A SuperSpeed plugs and receptacles as well as micro-sized Type-B SuperSpeed plugs and receptacles. The 3.0 receptacles are backward-compatible with the corresponding pre-3.0 plugs.

USB 3.x and USB 1.x Type-A plugs and receptacles are designed to interoperate. To achieve USB 3.0’s SuperSpeed (and SuperSpeed+ for USB 3.1 Gen 2), 5 extra pins are added to the unused area of the original 4 pin USB 1.0 design, making USB 3.0 Type-A plugs and receptacles backward compatible to those of USB 1.0.

On the device side, a modified Micro-B plug (Micro-B SuperSpeed) is used to cater for the five additional pins required to achieve the USB 3.0 features (USB-C plug can also be used). The USB 3.0 Micro-B plug effectively consists of a standard USB 2.0 Micro-B cable plug, with an additional 5 pins plug “stacked” to the side of it. In this way, cables with smaller 5 pin USB 2.0 Micro-B plugs can be plugged into devices with 10 contact USB 3.0 Micro-B receptacles and achieve backward compatibility.

USB cables exist with various combinations of plugs on each end of the cable, as displayed below in the USB cables matrix.

USB 3.0 B type plug

USB On-The-Go connectors [ edit ]

USB On-The-Go (OTG) introduces the concept of a device performing both master and slave roles. All current OTG devices are required to have one, and only one, USB connector: a Micro-AB receptacle. (In the past, before the development of Micro-USB, On-The-Go devices used Mini-AB receptacles).

The Micro-AB receptacle is capable of accepting both Micro-A and Micro-B plugs, attached to any of the legal cables and adapters as defined in revision 1.01 of the Micro-USB specification.

To enable Type-AB receptacles to distinguish which end of a cable is plugged in, plugs have an “ID” pin in addition to the four contacts in standard-size USB connectors. This ID pin is connected to GND in Type-A plugs, and left unconnected in Type-B plugs. Typically, a pull-up resistor in the device is used to detect the presence or absence of an ID connection.

The OTG device with the A-plug inserted is called the A-device and is responsible for powering the USB interface when required, and by default assumes the role of host. The OTG device with the B-plug inserted is called the B-device and by default assumes the role of peripheral. An OTG device with no plug inserted defaults to acting as a B-device. If an application on the B-device requires the role of host, then the Host Negotiation Protocol (HNP) is used to temporarily transfer the host role to the B-device.

OTG devices attached either to a peripheral-only B-device or a standard/embedded host have their role fixed by the cable, since in these scenarios it is only possible to attach the cable one way.[citation needed]

USB cable with a USB-C plug and a USB-C port on a laptop

Developed at roughly the same time as the USB 3.1 specification, but distinct from it, the USB-C Specification 1.0 was finalized in August 2014[26] and defines a new small reversible-plug connector for USB devices.[27] The USB-C plug connects to both hosts and devices, replacing various Type-A and Type-B connectors and cables with a standard meant to be future-proof.[26][28]

The 24-pin double-sided connector provides four power–ground pairs, two differential pairs for USB 2.0 data (though only one pair is implemented in a USB-C cable), four pairs for SuperSpeed data bus (only two pairs are used in USB 3.1 mode), two “sideband use” pins, V CONN +5 V power for active cables, and a configuration pin for cable orientation detection and dedicated biphase mark code (BMC) configuration data channel.[29][30] Type-A and Type-B adaptors and cables are required for older hosts and devices to plug into USB-C hosts and devices. Adapters and cables with a USB-C receptacle are not allowed.[31]

Full-featured USB-C 3.1 cables are electronically marked cables that contain a full set of wires and a chip with an ID function based on the configuration data channel and vendor-defined messages (VDMs) from the USB Power Delivery 2.0 specification. USB-C devices also support power currents of 1.5 A and 3.0 A over the 5 V power bus in addition to baseline 900 mA; devices can either negotiate increased USB current through the configuration line or they can support the full Power Delivery specification using both BMC-coded configuration line and legacy BFSK-coded V BUS line.[citation needed]

Host and device interface receptacles [ edit ]

USB plugs fit one receptacle with notable exceptions for USB On-The-Go “AB” support and the general backward compatibility of USB 3.0 as shown.

USB connector mating table (images not to scale) Plug Receptacle USB A

USB 3.0 A SS

USB B

USB 3.0 B SS

USB Mini-A

USB Mini-B

USB Micro-A

USB Micro-B

USB 3.0 Micro-B

USB-C USB A

Yes Only non-

SuperSpeed No No No No No No No No USB 3.0 A SS

Only non-

SuperSpeed Yes No No No No No No No No USB B

No No Yes No No No No No No No USB 3.0 B SS

No No Only non-

SuperSpeed Yes No No No No No No USB Mini-A

No No No No Deprecated No No No No No USB Mini-AB

No No No No Deprecated Deprecated No No No No USB Mini-B

No No No No No Yes No No No No USB Micro-AB

No No No No No No Yes Yes No No USB Micro-B

No No No No No No No Yes No No USB 3.0 Micro-B SS

No No No No No No No Only non-

SuperSpeed Yes No USB-C No No No No No No No No No Yes ^1 No corresponding Micro-A receptacle was ever designed.

USB cables table Plugs, each end USB A

USB Mini-A

USB Micro-A

USB B

USB Mini-B

USB Micro-B

USB 3.0 Micro-B

USB-C USB A

Proprietary,

hazardous Proprietary,

hazardous Proprietary,

hazardous Yes Yes Yes Yes Yes USB Mini-A

Proprietary,

hazardous No No Deprecated Deprecated Non-

standard No No USB Micro-A

Proprietary,

hazardous No No Non-

standard Non-

standard Yes No No USB B

Yes Deprecated Non-

standard No No No No Yes USB Mini-B

Yes Deprecated Non-

standard No OTG non-

standard OTG non-

standard No Yes USB Micro-B

Yes Non-

standard Yes No OTG non-

standard OTG non-

standard No Yes USB 3.0 Micro-B

Yes No No No No No OTG non-

standard Yes USB-C Yes No No Yes Yes Yes Yes Yes

Proprietary, hazardous Existing for specific proprietary purposes, not inter-operable with USB-IF compliant equipment and possibly damaging to both devices when plugged in. In addition to the above cable assemblies comprising two plugs, an “adapter” cable with a Micro-A plug and a standard-A receptacle is compliant with USB specifications.[8] Other combinations of connectors are not compliant. There do exist A-to-A assemblies, referred to as cables (such as the Easy Transfer Cable); however, these have a pair of USB devices in the middle, making them more than just cables. Non-standard The USB standards do not exhaustively list all combinations with one A-type and one B-type connector, however, most such cables have good chances of working. OTG non-standard Commonly available “OTG” cables that address widespread misuse of Micro-B and Mini-B receptacles for OTG devices, e.g. smartphones (as opposed to Micro-AB and Mini-AB, which accept either plug.) While not compliant with the USB standards, these cables at least do not provide a device damage hazard since B-type ports on devices are unpowered by default.[32] Deprecated Some older devices and cables with Mini-A connectors have been certified by USB-IF. The Mini-A connector is obsolete: no new Mini-A connectors and neither Mini-A nor Mini-AB receptacles will be certified.[13] Note: Mini-B is not deprecated, although it is less and less used since the arrival of Micro-B. Micro-B is not the same as USB type B. Micro-B has one more wire than USB type B.

Proprietary connectors and formats [ edit ]

Manufacturers of personal electronic devices might not include a USB standard connector on their product for technical or marketing reasons.[33] Some manufacturers such as Apple provide proprietary cables that permit their devices to physically connect to a USB standard port. Full functionality of proprietary ports and cables with USB standard ports is not assured; for example, some devices only use the USB connection for battery charging and do not implement any data transfer functions.[34]

Cabling [ edit ]

Data+ and Data− conductors are twisted together in a double A USB twisted pair, in which theandconductors are twisted together in a double helix . The wires are enclosed in a further layer of shielding.

The D± signals used by low, full, and high speed are carried over a twisted pair (typically unshielded) to reduce noise and crosstalk. SuperSpeed uses separate transmit and receive differential pairs, which additionally require shielding (typically, shielded twisted pair but twinax is also mentioned by the specification). Thus, to support SuperSpeed data transmission, cables contain twice as many wires and are thus larger in diameter.[35]

The USB 1.1 standard specifies that a standard cable can have a maximum length of 5 meters (16 ft 5 in) with devices operating at full speed (12 Mbit/s), and a maximum length of 3 meters (9 ft 10 in) with devices operating at low speed (1.5 Mbit/s).[36][37][38]

USB 2.0 provides for a maximum cable length of 5 meters (16 ft 5 in) for devices running at high speed (480 Mbit/s). The primary reason for this limit is the maximum allowed round-trip delay of about 1.5 μs. If USB host commands are unanswered by the USB device within the allowed time, the host considers the command lost. When adding USB device response time, delays from the maximum number of hubs added to the delays from connecting cables, the maximum acceptable delay per cable amounts to 26 ns.[39] The USB 2.0 specification requires that cable delay be less than 5.2 ns/m (1.6 ns/ft), (192000 km/s)—which is close to the maximum achievable transmission speed for standard copper wire.

The USB 3.0 standard does not directly specify a maximum cable length, requiring only that all cables meet an electrical specification: for copper cabling with AWG 26 wires the maximum practical length is 3 meters (9 ft 10 in).[40]

Power [ edit ]

Upstream USB connectors supply power at a nominal 5 V DC via the V_BUS pin to downstream USB devices.

Voltage tolerance and limits [ edit ]

Worst-case voltage drop topology of a USB 2.0 host to low-power device chain, at steady state

The tolerance on V_BUS at an upstream (or host) connector was originally ±5% (ie. could lie anywhere in the range 4.75 V to 5.25 V). With the release of the USB Type-C specification in 2014 and its 3 A power capability, the USB-IF elected to increase the upper voltage limit to 5.5 V to combat voltage droop at higher currents.[41] The USB 2.0 specification (and therefore implicitly also the USB 3.x specifications) was also updated to reflect this change at that time.[42] A number of extensions to the USB Specifications have progressively further increased the maximum allowable V_BUS voltage: starting with 6.0V with USB BC 1.2,[43] to 21.5 V with USB PD 2.0[44] and 50.9 V with USB PD 3.1,[44] while still maintaining backwards compatibility with USB 2.0 by requiring various forms of handshake before increasing the nominal voltage above 5 V.

USB PD continues the use of the bilateral 5% tolerance, with allowable voltages of PDO ±5% ±0.5 V (eg. for a PDO of 9.0 V, the maximum and minimum limits are 9.95 V and 8.05 V, respectively).[44]

There are several minimum allowable voltages defined at different locations within a chain of connectors, hubs, and cables between an upstream host (providing the power) and a downstream device (consuming the power). To allow for voltage drops, the voltage at the host port, hub port, and device are specified to be at least 4.75 V, 4.4 V, and 4.35 V respectively by USB 2.0 for low-power devices[a], but must be at least 4.75 V at all locations for high-power[b] devices (however, high-power devices are required to operate as a low-powered device so that they may be detected and enumerated if connected to a low-power upstream port). The USB 3.x specifications require that all devices must operate down to 4.00 V at the device port.

Unlike USB 2.0 and USB 3.2, USB4 does not define its own VBUS-based power model. Power for USB4 operation is established and managed as defined in the USB Type-C Specification and the USB PD Specification.

^ Low-power devices are those which draw less than 1 unit load. 1 unit load is 100 mA for USB 2.0 ^ High-power devices in USB 2.0 are those draw more than one unit load (up to a maximum of 5 unit loads). 1 unit load is 100mA.

Worst-case voltage drop topology of a USB 3.x host to device chain, at steady state. Note that under transient conditions the supply at the device can momentarily drop from 4.0 V to 3.67 V.

Allowable current draw [ edit ]

USB power standards Specification Current Voltage Power (max.) Low-power device 100 mA 5 V 0.50 W Low-power SuperSpeed (USB 3.0) device 150 mA 5 V 0.75 W High-power device 500 mA[a] 5 V 2.5 W High-power SuperSpeed (USB 3.0) device 900 mA[b] 5 V 4.5 W Multi-lane SuperSpeed (USB 3.2 Gen x2) device 1.5 A[c] 5 V 7.5 W Battery Charging (BC) 1.2 1.5 A 5 V 7.5 W USB-C 1.5 A 5 V 7.5 W 3 A 5 V 15 W Power Delivery 1.0/2.0/3.0 Type-C 5 A[d] 20 V 100 W Power Delivery 3.1 Type-C 5 A[d] 48 V[e] 240 W ^ Up to 5 unit loads; with non-SuperSpeed devices, one unit load is 100 mA. ^ Up to 6 unit loads; with SuperSpeed devices, one unit load is 150 mA. ^ Up to 6 unit loads; with multi-lane devices, one unit load is 250 mA. a b >3 A (>60 W) operation requires an electronically marked cable rated at 5 A. ^ >20 V (>60 W) operation requires an electronically marked Extended Power Range (EPR) cable.

The limit to device power draw is stated in terms of a unit load which is 100 mA for USB 2.0, or 150 mA for SuperSpeed (ie USB 3.x) devices. Low-power devices may draw at most 1 unit load, and all devices must act as low-power devices before they are configured. A high-powered device must be configured, after which it may draw up to 5 unit loads (500 mA), or 6 unit loads (900 mA) for SuperSpeed devices, as specified in its configuration because the maximum power may not always be available from the upstream port.[45][46][47][48]

A bus-powered hub is a high-power device providing low-power ports. It draws 1 unit load for the hub controller and 1 unit load for each of at most 4 ports. The hub may also have some non-removable functions in place of ports. A self-powered hub is a device that provides high-power ports by supplementing the power supply from the host with its own external supply. Optionally, the hub controller may draw power for its operation as a low-power device, but all high-power ports must draw from the hub’s self-power.

Where devices (for example, high-speed disk drives) require more power than a high-power device can draw,[49] they function erratically, if at all, from bus power of a single port. USB provides for these devices as being self-powered. However, such devices may come with a Y-shaped cable that has two USB plugs (one for power and data, the other for only power), so as to draw power as two devices.[50] Such a cable is non-standard, with the USB compliance specification stating that “use of a ‘Y’ cable (a cable with two A-plugs) is prohibited on any USB peripheral”, meaning that “if a USB peripheral requires more power than allowed by the USB specification to which it is designed, then it must be self-powered.”[51]

USB battery charging [ edit ]

USB Battery Charging (BC) defines a charging port, which may be a charging downstream port (CDP), with data, or a dedicated charging port (DCP) without data. Dedicated charging ports can be found on USB power adapters to run attached devices and battery packs. Charging ports on a host with both kinds will be labelled.[52]

The charging device identifies a charging port by non-data signaling on the D+ and D− terminals. A dedicated charging port places a resistance not exceeding 200 Ω across the D+ and D− terminals.[52]: § 1.4.7; table 5-3

Per the base specification, any device attached to a standard downstream port (SDP) must initially be a low-power device, with high-power mode contingent on later USB configuration by the host. Charging ports, however, can immediately supply between 0.5 and 1.5 A of current. The charging port must not apply current limiting below 0.5 A, and must not shut down below 1.5 A or before the voltage drops to 2 V.[52]

Since these currents are larger than in the original standard, the extra voltage drop in the cable reduces noise margins, causing problems with High Speed signaling. Battery Charging Specification 1.1 specifies that charging devices must dynamically limit bus power current draw during High Speed signaling;[53] 1.2 specifies that charging devices and ports must be designed to tolerate the higher ground voltage difference in High Speed signaling.

Revision 1.2 of the specification was released in 2010. It made several changes, and increased limits including allowing 1.5 A on charging downstream ports for unconfigured devices—allowing High Speed communication while having a current up to 1.5 A. Also, support was removed for charging port detection via resistive mechanisms.[54]

Before the Battery Charging Specification was defined, there was no standardized way for the portable device to inquire how much current was available. For example, Apple’s iPod and iPhone chargers indicate the available current by voltages on the D− and D+ lines. When D+ = D− = 2.0 V, the device may pull up to 900 mA. When D+ = 2.0 V and D− = 2.8 V, the device may pull up to 1 A of current.[55] When D+ = 2.8 V and D− = 2.0 V, the device may pull up to 2 A of current.[56]

Accessory charging adaptors (ACA) [ edit ]

Portable devices having a USB On-The-Go port may want to charge and access a USB peripheral simultaneously, yet having only a single port (both due to On-The-Go and space requirement) prevents this. Accessory charging adapters (ACA) are devices that provide portable charging power to an On-The-Go connection between host and peripheral.

ACAs have three ports: the OTG port for the portable device, which is required to have a Micro-A plug on a captive cable; the accessory port, which is required to have a Micro-AB or type-A receptacle; and the charging port, which is required to have a Micro-B receptacle, or type-A plug or charger on a captive cable. The ID pin of the OTG port is not connected within plug as usual, but to the ACA itself, where signals outside the OTG floating and ground states are used for ACA detection and state signaling. The charging port does not pass data, but does use the D± signals for charging port detection. The accessory port acts as any other port. When appropriately signaled by the ACA, the portable device can charge from the bus power as if there were a charging port present; any OTG signals over bus power are instead passed to the portable device via the ID signal. Bus power is also provided to the accessory port from the charging port transparently.[52]

USB Power Delivery [ edit ]

The USB Type-C Charging logo ( USB4 20Gbps port)

USB PD Rev. 1.0 source profiles[57] Profile +5 V +12 V +20 V 0 Reserved 1 2.0 A, 10 W[a] — — 2 1.5 A, 18 W 3 3.0 A, 36 W 4 3.0 A, 60 W 5 5.0 A, 60 W 5.0 A, 100 W ^ Default start-up profile

USB PD rev. 2.0/3.x source power rules Source output

power rating (W) Current, at: (A) +5 V +9 V +15 V +20 V +28 V[A] +36 V[A] +48 V[A] Standard

Power Range

(SPR)[58][59][60] 0.5–15 0.1–3.0 — — — — — — 15–27 3.0 (15 W) 1.67–3.0 27–45 3.0 (27 W) 1.8–3.0 45–60 3.0 (45 W) 2.25–3.0 60–100 3.0–5.0[B] Extended

Power Range

(EPR)[60] 100-140 3.0 (60 W),

5.0 (100 W)[B] 3.57–5.0 140–180 5.0 (140 W) 3.89–5.0 180–240 5.0 (180 W) 3.75–5.0 a b c Requires electronically marked EPR cables a b Requires electronically marked 5 A cables

Power rule of USB Power Delivery Revision 3.0, Version 1.2

In July 2012, the USB Promoters Group announced the finalization of the USB Power Delivery (USB-PD) specification (USB PD rev. 1), an extension that specifies using certified PD aware (USB A and USB B plugs have a mechanical mark while Micro plugs have a resistor or capacitor attached to the ID pin indicating the cable capability) USB cables with standard USB Type-A and Type-B connectors to deliver increased power (more than 7.5 W) to devices with greater power demands. Devices can request higher currents and supply voltages from compliant hosts—up to 2 A at 5 V (for a power consumption of up to 10 W), and optionally up to 3 A or 5 A at either 12 V (36 W or 60 W) or 20 V (60 W or 100 W).[61] In all cases, both host-to-device and device-to-host configurations are supported.[62]

The intent is to permit uniformly charging laptops, tablets, USB-powered disks and similarly higher-power consumer electronics, as a natural extension of existing European and Chinese mobile telephone charging standards. This may also affect the way electric power used for small devices is transmitted and used in both residential and public buildings.[63][64] The standard is designed to coexist with the previous USB Battery Charging specification.[65]

The first Power Delivery specification defined six fixed power profiles for the power sources. PD-aware devices implement a flexible power management scheme by interfacing with the power source through a bidirectional data channel and requesting a certain level of electrical power, variable up to 5 A and 20 V depending on supported profile. The power configuration protocol can use BMC coding over the CC wire if one is present, or a 24 MHz BFSK-coded transmission channel on the V BUS line.

The USB Power Delivery specification revision 2.0 (USB PD Rev. 2.0) has been released as part of the USB 3.1 suite.[58][66][67] It covers the USB-C cable and connector with a separate configuration channel, which now hosts a DC coupled low-frequency BMC-coded data channel that reduces the possibilities for RF interference.[68] Power Delivery protocols have been updated to facilitate USB-C features such as cable ID function, Alternate Mode negotiation, increased V BUS currents, and V CONN -powered accessories.

As of USB Power Delivery specification revision 2.0, version 1.2, the six fixed power profiles for power sources have been deprecated.[69] USB PD Power Rules replace power profiles, defining four normative voltage levels at 5 V, 9 V, 15 V, and 20 V. Instead of six fixed profiles, power supplies may support any maximum source output power from 0.5 W to 100 W.

The USB Power Delivery specification revision 3.0 defines an optional Programmable Power Supply (PPS) protocol that allows granular control over V BUS power, allowing a range of 3.3 to 21 V in 20 mV steps to facilitate constant-current or constant-voltage charging. Revision 3.0 also adds extended configuration messages and fast role swap and deprecates the BFSK protocol.[59][70][71]

As of April 2016, there are silicon controllers available from several sources such as Texas Instruments and Cypress Semiconductor.[72][73] Power supplies bundled with USB-C based laptops support USB PD.[74] In addition accessories are available that support USB PD Rev. 2.0 at multiple voltages.[75][76][77][78]

The Certified USB Fast Charger logo for USB Type-C charging ports

On 8 January 2018 USB-IF announced “Certified USB Fast Charger” logo for chargers that use “Programmable Power Supply” (PPS) protocol from the USB Power Delivery 3.0 specification.[79] In May 2021, the USB PD promoter group launched revision 3.1 of the specification.[60] Revision 3.1 adds Extended Power Range (EPR) mode which allows higher voltages of 28, 36, and 48 V, providing up to 240 W of power (48 V at 5 A), and the “Adjustable Voltage Supply” (AVS) protocol which allows specifying the voltage from a range of 15 to 48 V in 100 mV steps.[80][81] Higher voltages require electronically marked EPR cables that support 5 A operation and incorporate mechanical improvements required by the USB Type-C standard rev. 2.1; existing power modes are retroactively renamed Standard Power Range (SPR). In October 2021 Apple introduced a 140 W (28 V 5 A) GaN USB PD charger with new Macbooks.[82]

Prior to Power Delivery, mobile phone vendors used custom protocols to exceed the 7.5 W cap on USB-BCS. For example, Qualcomm’s Quick Charge 2.0 is able to deliver 18 W at a higher voltage, and VOOC delivers 20 W at the normal 5 V.[83] Some of these technologies, such as Quick Charge 4, eventually became compatible with USB PD again.[84]

Sleep-and-charge ports [ edit ]

A yellow USB port denoting sleep-and-charge

Sleep-and-charge USB ports can be used to charge electronic devices even when the computer that hosts the ports is switched off. Normally, when a computer is powered off the USB ports are powered down. This feature has also been implemented on some laptop docking stations allowing device charging even when no laptop is present.[85] On laptops, charging devices from the USB port when it is not being powered from AC drains the laptop battery; most laptops have a facility to stop charging if their own battery charge level gets too low.[86]

On Dell, HP and Toshiba laptops, sleep-and-charge USB ports are marked with the standard USB symbol with an added lightning bolt or battery icon on the right side.[87] Dell calls this feature PowerShare,[88] and it needs to be enabled in the BIOS. Toshiba calls it USB Sleep-and-Charge.[89] On Acer Inc. and Packard Bell laptops, sleep-and-charge USB ports are marked with a non-standard symbol (the letters USB over a drawing of a battery); the feature is called Power-off USB.[90] Lenovo calls this feature Always On USB.[91]

Mobile device charger standards [ edit ]

In China [ edit ]

As of 14 June 2007 , all new mobile phones applying for a license in China are required to use a USB port as a power port for battery charging.[92][93] This was the first standard to use the convention of shorting D+ and D− in the charger.[94]

OMTP/GSMA Universal Charging Solution [ edit ]

In September 2007, the Open Mobile Terminal Platform group (a forum of mobile network operators and manufacturers such as Nokia, Samsung, Motorola, Sony Ericsson, and LG) announced that its members had agreed on Micro-USB as the future common connector for mobile devices.[95][96]

The GSM Association (GSMA) followed suit on 17 February 2009,[97][98][99][100] and on 22 April 2009, this was further endorsed by the CTIA – The Wireless Association,[101] with the International Telecommunication Union (ITU) announcing on 22 October 2009 that it had also embraced the Universal Charging Solution as its “energy-efficient one-charger-fits-all new mobile phone solution,” and added: “Based on the Micro-USB interface, UCS chargers will also include a 4-star or higher efficiency rating—up to three times more energy-efficient than an unrated charger.”[102]

EU smartphone power supply standard [ edit ]

In June 2009, many of the world’s largest mobile phone manufacturers signed an EC-sponsored Memorandum of Understanding (MoU), agreeing to make most data-enabled mobile phones marketed in the European Union compatible with a common External Power Supply (common EPS). The EU’s common EPS specification (EN 62684:2010) references the USB Battery Charging Specification and is similar to the GSMA/OMTP and Chinese charging solutions.[103][104] In January 2011, the International Electrotechnical Commission (IEC) released its version of the (EU’s) common EPS standard as IEC 62684:2011.[105] The European Union and its members should adopt a resolution during 2022 for the global adoption of USB Type C chargers for all mobile products on the European market.[106]

Faster-charging standards [ edit ]

A variety of (non-USB) standards support charging devices faster than the USB Battery Charging standard. When a device doesn’t recognize the faster-charging standard, generally the device and the charger fall back to the USB battery-charging standard of 5 V at 1.5 A (7.5 W). When a device detects it is plugged into a charger with a compatible faster-charging standard, the device pulls more current or the device tells the charger to increase the voltage or both to increase power (the details vary between standards).[107]

Such standards include:[107][108]

Qualcomm Quick Charge (QC)

MediaTek Pump Express

Samsung Adaptive Fast Charging

Oppo Super VOOC Flash Charge, are also known as Dash Charge or Warp Charge on OnePlus devices and Dart Charge on Realme devices

or on OnePlus devices and on Realme devices Huawei SuperCharge

Anker PowerIQ

Google fast charging

Motorola TurboPower

Non-standard devices [ edit ]

Some USB devices require more power than is permitted by the specifications for a single port. This is common for external hard and optical disc drives, and generally for devices with motors or lamps. Such devices can use an external power supply, which is allowed by the standard, or use a dual-input USB cable, one input of which is for power and data transfer, the other solely for power, which makes the device a non-standard USB device. Some USB ports and external hubs can, in practice, supply more power to USB devices than required by the specification but a standard-compliant device may not depend on this.

In addition to limiting the total average power used by the device, the USB specification limits the inrush current (i.e., the current used to charge decoupling and filter capacitors) when the device is first connected. Otherwise, connecting a device could cause problems with the host’s internal power. USB devices are also required to automatically enter ultra low-power suspend mode when the USB host is suspended. Nevertheless, many USB host interfaces do not cut off the power supply to USB devices when they are suspended.[109]

Some non-standard USB devices use the 5 V power supply without participating in a proper USB network, which negotiates power draw with the host interface. These are usually called USB decorations.[citation needed] Examples include USB-powered keyboard lights, fans, mug coolers and heaters, battery chargers, miniature vacuum cleaners, and even miniature lava lamps. In most cases, these items contain no digital circuitry, and thus are not standard-compliant USB devices. This may cause problems with some computers, such as drawing too much current and damaging circuitry. Prior to the USB Battery Charging Specification, the USB specification required that devices connect in a low-power mode (100 mA maximum) and communicate their current requirements to the host, which then permits the device to switch into high-power mode.

Some devices, when plugged into charging ports, draw even more power (10 watts at 2.1 amperes) than the Battery Charging Specification allows—the iPad is one such device;[110] it negotiates the current pull with data pin voltages.[55] Barnes & Noble Nook Color devices also require a special charger that runs at 1.9 amperes.[111]

PoweredUSB [ edit ]

PoweredUSB is a proprietary extension that adds four pins supplying up to 6 A at 5 V, 12 V, or 24 V. It is commonly used in point of sale systems to power peripherals such as barcode readers, credit card terminals, and printers.

USB 케이블(커넥터)의 종류와 이름을 알아보자.

설 명

USB 3.0의 이라는 용어 자체는 커넥터 이름이라기보다 전송규약이라 이 커넥터를 USB3.0 이라고 부르기는 사실 애매하긴 하다. 하지만 통상 USB3.0이라 부른다 커넥터의 형상은 호환성을 위해서인지 USB Type-A와 외관이 동일하며, 구분을 위해 내부 구조물을 파란색으로 정했다.

USB 3.0은 그 안에도 2가지 타입의 규격이 있는데 속도가 5Gbps의 USB 3.0과 이보다 속도를 2배 향상시킨 10Gbps의 USB 3.1이 있다 커넥터의 형상은 같아서 육안으로 구분하긴 어렵다.

USB 3.0의 정식명칭은 몇차례 개정을 하는통에 여러가지 이름이 혼용되는 상황이다.

USB 3.0 규격의 명칭은 아래와 같다.

USB 3.0 = USB 3.1 Gen 2 = USB 3.2 Gen2

USB 3.1 = USB 3.1 Gen 2 = USB 3.2 Gen2

키워드에 대한 정보 usb b 타입 커넥터

다음은 Bing에서 usb b 타입 커넥터 주제에 대한 검색 결과입니다. 필요한 경우 더 읽을 수 있습니다.

이 기사는 인터넷의 다양한 출처에서 편집되었습니다. 이 기사가 유용했기를 바랍니다. 이 기사가 유용하다고 생각되면 공유하십시오. 매우 감사합니다!

사람들이 주제에 대해 자주 검색하는 키워드 이 이상한 USB 커넥터가있는 이유 (B 형)

  • USB
  • connector
  • type b
  • printer
  • 3.0
  • type c
  • type a
  • usb on the go

이 #이상한 #USB #커넥터가있는 #이유 #(B #형)


YouTube에서 usb b 타입 커넥터 주제의 다른 동영상 보기

주제에 대한 기사를 시청해 주셔서 감사합니다 이 이상한 USB 커넥터가있는 이유 (B 형) | usb b 타입 커넥터, 이 기사가 유용하다고 생각되면 공유하십시오, 매우 감사합니다.

See also  서울대 포닥 연봉 | 포닥 (Postdoc)에 관한 거의 모든 것 - 누가, 왜, 어디서, 얼마나? 빠른 답변

Leave a Reply

Your email address will not be published. Required fields are marked *